

Sedimentary Environments Chapter 8

Does not contain complete lecture notes. To be used to help organize lecture notes and home/test studies.

What is a sedimentary rock?

- Sedimentary rocks are products of mechanical and chemical weathering
- They account for about 5 percent (by volume) of Earth's outer 10 miles
- Contain evidence of past environments
 - Provide information about sediment transport
 - Often contain fossils

What is a sedimentary rock?

- Sedimentary rocks are important for economic considerations because they may contain
 - Coal
 - Petroleum and natural gas
 - Sources of iron, aluminum, and manganese

Turning sediment into rock

- Many changes occur to sediment after it is deposited
- Diagenesis all of the chemical, physical, and biological changes that take place after sediments are deposited
 - Occurs within the upper few kilometers of Earth's crust

Turning sediment into rock

- Diagenesis
 - Includes
 - Recrystallization development of more stable minerals from less stable ones
 - Lithification unconsolidated sediments are transformed into solid sedimentary rock by compaction and cementation
 - Natural cements include calcite, silica, and iron oxide

Types of sedimentary rocks

- Sediment originates from mechanical and/or chemical weathering
- Rock types are based on the source of the material
 - Detrital rocks transported sediment as solid particles
 - Chemical rocks sediment that was once in solution

Detrital sedimentary rocks

- The chief constituents of detrital rocks include
 - Clay minerals
 - Quartz
 - Feldspars
 - Micas
- Particle size is used to distinguish among the various types of detrital rocks

Detrital sedimentary rocks

- Common detrital sedimentary rocks (in order of increasing particle size)
 - Shale
 - Mud-sized particles in thin layers that are commonly referred to as laminea
 - Most common sedimentary rock

Detrital sedimentary rocks

- Sandstone
 - Composed of sand-sized particles
 - Forms in a variety of environments
 - Sorting, shape, and composition of the grains can be used to interpret the rock's history
 - Quartz is the predominant mineral

Detrital sedimentary rocks

- Conglomerate and breccia
 - Both are composed of particles greater than 2mm in diameter
 - Conglomerate consists largely of rounded gravels
 - Breccia is composed mainly of large angular particles

Chemical sedimentary rocks

- Consist of precipitated material that was once in solution
- Precipitation of material occurs in two ways
 - Inorganic processes
 - Organic processes (biochemical origin)

Chemical sedimentary rocks

- Common chemical sedimentary rocks
 - Limestone
 - Most abundant chemical rock
 - Composed chiefly of the mineral calcite
 - Marine biochemical limestones form as coral reefs, coquina (broken shells), and chalk (microscopic organisms)
 - Inorganic limestones include travertine and oolitic limestone

Chemical sedimentary rocks

- Common chemical sedimentary rocks
 - Dolostone
 - Typically formed secondarily from limestone
 - Chert
 - Made of microcrystalline quartz
 - Varieties include flint and jasper (banded form is called agate)

Chemical sedimentary rocks

- Common chemical sedimentary rocks
 - Evaporites
 - Evaporation triggers deposition of chemical precipitates
 - Examples include rock salt and rock gypsum

Chemical sedimentary rocks

- Common chemical sedimentary rocks
 - Coal
 - Different from other rocks because it is composed of organic material
 - $-\,Stages\,\,in\,\,coal\,\,formation\,\,(in\,\,order)$
 - 1. Plant material
 - 2. Peat
 - 3. Lignite
 - **4.** Bituminous

Classification of sedimentary rocks

- Sedimentary rocks are classified according to the type of material
- Two major groups
 - Detrital
 - Chemical

Classification of sedimentary rocks

- Two major textures are used in the classification of sedimentary rocks
 - Clastic
 - Discrete fragments and particles
 - All detrital rocks have a clastic texture
 - Nonclastic
 - Pattern of interlocking crystals
 - May resemble an igneous rock

Sedimentary environments

- A geographic setting where sediment is accumulating
- Determines the nature of the sediments that accumulate (grain size, grain shape, etc.)

Sedimentary environments

- Types of sedimentary environments
 - Continental
 - Dominated by erosion and deposition associated with streams
 - Glacial
 - Wind (eolian)
 - Marine
 - Shallow (to about 200 meters)
 - Deep (seaward of continental shelves)

Sedimentary environments

- Types of sedimentary environments
 - Transitional (shoreline)
 - Tidal flats
 - Lagoons
 - Deltas

Sedimentary environments

- Sedimentary facies
 - Different sediments often accumulate adjacent to one another at the same time
 - Each unit (called a facies) possesses a distinctive set of characteristics reflecting the conditions in a particular environment
 - The merging of adjacent facies tends to be a gradual transition

Sedimentary structures

- Provide information useful in the interpretation of Earth history
- **■** Types of sedimentary structures
 - Strata, or beds (most characteristic of sedimentary rocks)
 - Bedding planes that separate strata
 - Cross-bedding

Sedimentary structures

- Types of sedimentary structures
 - Graded beds
 - Ripple marks
 - Mud cracks

Fossils: Evidence of past life

- By definition, fossils are the traces or remains of prehistoric life now preserved in rock
- Fossils are generally found in sediment or sedimentary rock (rarely in metamorphic and never in igneous rock)

Fossils: Evidence of past life

- Geologically fossils are important for several reasons
 - Aid in interpretation of the geologic past
 - \bullet Serve as important time indicators
 - Allow for correlation of rocks from different places