

Igneous Rocks -Solids from Melts Chapter 5

Does not contain complete lecture notes. To be used to help organize lecture notes and home/test studies.

Characteristics of magma

- Igneous rocks form as molten rock cools and solidifies
- General Characteristic of magma
 - Parent material of igneous rocks
 - Forms from partial melting of rocks inside the Earth
 - Magma that reaches the surface is called lava

Characteristics of magma

- General Characteristic of magma
 - Rocks formed from lava at the surface are classified as extrusive, or volcanic rocks
 - Rocks formed from magma that crystallizes at depth are termed intrusive, or plutonic rocks

Characteristics of magma

● The nature of magma

- Consists of three components:
 - $-\,A$ liquid portion, called melt, that is composed of mobile ions
 - Solids, if any, are silicate minerals that have already crystallized from the melt
 - Volatiles, which are gases dissolved in the melt, including water vapor (H_2O) , carbon dioxide (CO_2) , and sulfur dioxide (SO_2)

Characteristics of magma

Crystallization of magma

- Cooling of magma results in the systematic arrangement of ions into orderly patterns
- The silicate minerals resulting from crystallization form in a predictable order

Characteristics of magma

Crystallization of magma

- Texture in igneous rocks is determined by the size and arrangement of mineral grains
- Igneous rocks are typically classified by
 - Texture
 - Mineral composition

Igneous textures

- Texture is used to describe the overall appearance of a rock based on the size, shape, and arrangement of interlocking minerals
- **●** Factors affecting crystal size
 - · Rate of cooling
 - Slow rate promotes the growth of fewer but larger crystals

Igneous textures

- Factors affecting crystal size
 - · Rate of cooling
 - Fast rate forms many small crystals
 - Very fast rate forms glass
 - Amount of silica (SiO₂) present
 - · Amount of dissolved gases

Igneous textures

- Six (6) Types of igneous textures
 - Aphanitic (fine-grained, volcanic) texture
 - Rapid rate of cooling of lava or magma
 - Microscopic crystals
 - May contain vesicles (holes from gas bubbles)
 - Phaneritic (coarse-grained, plutonic) texture
 - Slow cooling
 - Crystals can be identified without a microscope

Igneous textures

- Types of igneous textures cont'd
 - Porphyritic texture
 - Minerals form at different temperatures as well as differing rates
 - Large crystals, called phenocrysts, are embedded in a matrix of smaller crystals, called the groundmass
 - · Glassy texture
 - Very rapid cooling of molten rock
 - Resulting rock is called obsidian

Igneous textures

- Types of igneous textures cont'd
 - Pyroclastic texture
 - Various fragments ejected during a violent volcanic eruption
 - Textures often appear to more similar to sedimentary rocks
 - Pegmatitic texture
 - Exceptionally coarse grained
 - Form in late stages of crystallization of granitic magmas

- Igneous rocks are composed primarily of silicate minerals
 - Dark (or ferromagnesian) silicates
 - Olivine
 - Pyroxene
 - $-\,Amphibole\,$
 - Biotite mica

- Igneous rocks are composed primarily of silicate minerals
 - Light (or non-ferromagnesian) silicates
 - Quartz
 - Muscovite mica
 - $\, Feld spars \,$

Igneous compositions

- Granitic versus basaltic compositions
 - Granitic composition
 - Composed of light-colored silicates
 - Designated as being felsic (feldspar and silica) in composition
 - Contains high amounts of silica (SiO₂)
 - Major constituents of continental crust

- Granitic versus basaltic compositions
 - Basaltic composition
 - Composed of dark silicates and calcium-rich feldsnar
 - Designated as being mafic (magnesium and ferrum, for iron) in composition
 - More dense than granitic rocks
 - Comprise the ocean floor as well as many volcanic islands

- Other compositional groups
 - Intermediate (or andesitic) composition
 - Contain at least 25 percent dark silicate minerals
 - Associated with explosive volcanic activity
 - Ultramafic composition
 - Rare composition that is high in magnesium and iron
 - Composed entirely of ferromagnesian silicates

Igneous compositions

- Silica content as an indicator of composition
 - Silica content in crustal rocks exhibits a considerable range
 - A low of 45 percent in ultramafic rocks
 - $\ Over \ 70 \ percent \ in \ felsic \ rocks$

- Silica content influences a magma's behavior
 - Granitic magma
 - High silica content
 - Extremely viscous
 - Liquid exists at temperatures as low as $700\ensuremath{^{o}C}$

- Silica content influences a magma's behavior
 - Basaltic magma
 - Much lower silica content
 - Fluid-like behavior
 - Crystallizes at higher temperatures

Igneous compositions

- Naming igneous rocks granitic (felsic) rocks
 - Granite
 - Phaneritic
 - Over 25 percent quartz, about 65 percent or more feldspar
 - May exhibit a porphyritic texture
 - Very abundant as it is often associated with mountain building
 - The term granite covers a wide range of mineral compositions

- Naming igneous rocks granitic (felsic) rocks
 - Rhyolite
 - Extrusive equivalent of granite
 - May contain glass fragments and vesicles
 - Aphanitic texture
 - Less common and less voluminous than granite

- Naming igneous rocks granitic (felsic) rocks
 - Obsidian
 - Dark colored
 - Glassy texture
 - Pumice
 - Volcanic
 - Glassy texture
 - Frothy appearance with numerous voids

Igneous compositions

- Naming igneous rocks intermediate rocks
 - Andesite
 - Volcanic origin
 - Aphanitic texture
 - Often resembles rhyolite

- Naming igneous rocks intermediate rocks
 - Diorite
 - Plutonic equivalent of andesite
 - Coarse grained
 - Intrusive
 - Composed mainly of intermediate feldspar and amphibole

- Naming igneous rocks basaltic (mafic) rocks
 - Basalt
 - Volcanic origin
 - Aphanitic texture
 - Composed mainly of pyroxene and calciumrich plagioclase feldspar
 - Most common extrusive igneous rock

Igneous compositions

- Naming igneous rocks basaltic (mafic) rocks
 - Gabbro
 - Intrusive equivalent of basalt
 - Phaneritic texture consisting of pyroxene and calcium-rich plagioclase
 - Makes up a significant percentage of the oceanic crust

- **●** Naming igneous rocks pyroclastic rocks
 - Composed of fragments ejected during a volcanic eruption
 - Varieties
 - Tuff ash-sized fragments
 - Volcanic breccia particles larger than ash

Origin of Magma

- Highly debated topic
- Generating magma from solid rock
 - Produced from partial melting of rocks in the crust and upper mantle
 - · Role of heat
 - Temperature increases within Earth's upper crust (called the geothermal gradient) average between 20°C to 30°C per kilometer

Origin of Magma

- Role of heat
 - Rocks in the lower crust and upper mantle are near their melting points
 - Any additional heat (from rocks descending into the mantle or rising heat from the mantle) may induce melting

Origin of Magma

- Role of pressure
 - An increase in confining pressure causes an increase in a rock's melting temperature or conversely, reducing the pressure lowers the melting temperature
 - When confining pressures drop, decompression melting occurs

Origin of Magma

- Role of volatiles
 - Volatiles (primarily water) cause rocks to melt at lower temperatures
 - This is particularly important where oceanic lithosphere descends into the mantle

Evolution of magmas

- A single volcano may extrude lavas exhibiting very different compositions
- Bowen's reaction series and the composition of igneous rocks
 - N.L. Bowen demonstrated that as a magma cools, minerals crystallize in a systematic fashion based on their melting points

Evolution of magmas

- Bowen's reaction series
 - During crystallization, the composition of the liquid portion of the magma continually changes
 - Composition changes due to removal of elements by earlier-forming minerals
 - The silica component of the melt becomes enriched as crystallization proceeds
 - Minerals in the melt can chemically react and change

Evolution of magmas

- Processes responsible for changing a magma's composition
 - Magmatic differentiation
 - Separation of a melt from earlier formed crystals to form a different composition of magma
 - Assimilation
 - Changing a magma's composition by the incorporation of foreign matter (surrounding rock bodies) into a magma

Evolution of magmas

- Processes responsible for changing a magma's composition
 - Magma mixing
 - Involves two bodies of magma intruding one another
 - Two chemically distinct magmas may produce a composition quite different from either original magma

Evolution of magmas

- Partial melting and magma formation
 - Incomplete melting of rocks is known as partial melting
 - Formation of basaltic magmas
 - Most originate from partial melting of ultramafic rock in the mantle
 - Basaltic magmas form at mid-ocean ridges by decompression melting or at subduction zones

Evolution of magmas

- Partial melting and magma formation
 - Formation of basaltic magmas
 - As basaltic magmas migrate upward, confining pressure decreases which reduces the melting temperature
 - Large outpourings of basaltic magma are common at Earth's surface

Evolution of magmas

- Partial melting and magma formation
 - Formation of andesitic magmas
 - Interactions between mantle-derived basaltic magmas and more silica-rich rocks in the crust generate magma of andesitic composition
 - Andesitic magma may also evolve by magmatic differentiation

Evolution of magmas

- Partial melting and magma formation
 - Formation of granitic magmas
 - Most likely form as the end product of crystallization of andesitic magma
 - Granitic magmas are higher in silica and therefore more viscous than other magmas
 - Because of their viscosity, they lose their mobility before reaching the surface
 - $\ Tend \ to \ produce \ large \ plutonic \ structures$