ABSTRACT
Large-magnitude retroarc shortening of Cretaceous age is well documented in the Sevier orogenic belt of the western United States, and has been associated with eastward Franciscan subduction that began in the Middle–Late Jurassic, but evidence for major Late Jurassic retroarc shortening has been lacking. Here we report new Lu-Hf garnet geochronology, pressure-temperature (P-T) paths, and 40Ar/39Ar thermochronology data that document tectonic burial of Late Jurassic age in a Barrovian metamorphic terrain, the Funeral Mountains metamorphic core complex, California, located in the hinterland of the Sevier orogenic belt. The P-T paths determined from growth-zoned garnets in upper greenschist facies pelitic schist show steep P-T trajectories consistent with metamorphism during thrust loading. The age of thrust loading is constrained by a five-point Lu-Hf garnet isochron to be 158.2 ± 2.6 Ma (2σ). Partial exhumation, recorded in 146–153 Ma 40Ar/39Ar muscovite cooling ages, closely followed garnet growth. Late Jurassic Barrovian metamorphism has not been previously recognized in Cordilleran metamorphic core complexes, possibly due to being obscured by Late Cretaceous to Tertiary deformation, magmatism, and metamorphism. This study finds that the period of large-magnitude crustal shortening in the retroarc extended into the Late Jurassic, and may have closely followed the formation of the coherent orogenic system associated with east-dipping Franciscan subduction.

INTRODUCTION
The late Middle to early Late Jurassic marked a fundamental change in the geodynamic setting of western North America. Protracted Late Triassic–Middle Jurassic plate convergence, punctuated by collisions of island arcs with the continental margin (e.g., Schweickert and Cowan, 1975; Dorsey and LaMaskin, 2007; Dickinson, 2008), was followed by a westward step of the plate margin during initiation of Franciscan subduction and the Late Jurassic to early Cenozoic Andean-style (noncollisional) Cordilleran orogen (Burchfiel et al., 1992; Coney and Evenchick, 1994; DeCelles, 2004). The response within the retroarc to the tectonic reorganization in the forearc remains poorly understood. Cretaceous shortening in the retroarc Sevier fold-thrust belt and its hinterland, broadly contemporaneous with the Cretaceous development of the Franciscan accretionary complex, Great Valley forearc basin, and Sierran magmatic arc (e.g., Cowan and Bruhn, 1992) (Fig. 1), is commonly attributed to strong coupling between the eastward-underflowing Farallon plate and the westward-moving North America plate (e.g., Burchfiel et al., 1992; Coney and Evenchick, 1994). In contrast, Early to Middle Jurassic retroarc shortening (e.g., Wyld, 2002; Dunne and Walker, 2004) may have been driven by arc collision and/or accretion (e.g., Dorsey and LaMaskin, 2007). Through combined Lu-Hf garnet geochronology, pressure-temperature (P-T) paths, and 40Ar/39Ar thermochronology of metamorphic rocks from the central Funeral Mountains, California, we present the first conclusive evidence for Late Jurassic (ca. 158 Ma) Barrovian metamorphism in a metamorphic core complex of the Sevier hinterland, marking some of the earliest retroarc shortening to follow the development and consolidation of the coherent orogenic system associated with east-dipping Franciscan subduction (e.g., Coney and Evenchick, 1994; DeCelles, 2004).

GEOLOGIC SETTING OF THE FUNERAL MOUNTAINS
The Funeral Mountains comprise a thick (~13 km) sequence of Mesoproterozoic to early Paleozoic metasedimentary rocks (Wright and Troxel, 1993) exposed in a tilted crustal section beneath a low-angle normal fault, the Boundary Canyon detachment fault. The deepest and oldest rocks record upper amphibolite facies metamorphism and migmatization in the northwest part of the range in Monarch Canyon (Fig. 2) (Labotka, 1980; Hoisch and Simpson, 1993; Applegate and Hodges, 1995; Mattinson et al., 2007). Progressively younger Neoproterozoic protoliths are exposed to the southeast, coinciding with a systematic decrease in metamorphic grade to
subgreenschist facies over a distance of ~40 km. Low-angle normal faults of low displacement occur within the lower plate package (Fig. 2).

Geochronologic studies from the highest grade metamorphic rocks in Monarch Canyon have encountered difficulties with excess argon in hornblende (DeWitt et al., 1988; Applegate, 1994) and highly discordant U-Pb ages (Applegate, 1994), and metamorphic rocks have undergone multiple episodes of shearing and the thermal effects of protracted Late Cretaceous to Paleocene leucogranitic injection and partial melting (Applegate and Hodges, 1995; Martinson et al., 2007). In contrast, the lower grade rocks in the central portion of the range (Indian Pass area; Fig. 2) lack the Late Cretaceous thermal overprint, shear fabrics, and granitic injections, and include garnet schists that are ideal for resolving the age of metamorphism and for determining pressure-temperature (P-T) paths.

CONDITIONS OF METAMORPHISM AND P-T PATHS

Two garnet schist samples (CC68I and SS-FM307–11D) from the upper Johnnie Formation near Indian Pass were studied to determine P-T paths. Both contain the mineral assemblage quartz + muscovite + chlorite + chloritoid + garnet with accessory ilmenite, apatite, zircon, and tourmaline. Mineral chemistry and major element maps on garnet were generated by electron probe microanalysis (see the GSA Data Repository1 for run conditions). In each sample, two garnets were mapped and analyzed with line traverses; the other major phases were also analyzed.

Pseudosections

Pseudosections were calculated using the G-minimization approach of de Capitani and Petrakakis (2010) to show mineral assemblage stability fields (Fig. 3) and compositional isopleths for garnet cores (Xpy, Xal, Xsp, and Xgr, values ± 0.01; for details on the method, see the Data Repository). The isopleths for each garnet core converge within a narrow region of P-T space (Fig. 3), interpreted to represent the conditions of garnet nucleation. The combined isopleth intersection fields in sample CC68I occur at conditions of 523–527 °C and 4400–5200 bar, and in sample SSFM307–11D occur at 520–530 °C and 4450–5150 bar (Fig. 3). In both samples, the core isopleth intersections plot outside the stability field of the rock’s mineral assemblage and inside a field that includes one additional phase, margarite. Thus we conclude that the garnets nucleated in the presence of margarite, which was then entirely consumed as the garnets grew. The P-T path followed a trajectory that ended inside the peak mineral assemblage field. This is confirmed by garnet growth simulations (see the following).

P-T Paths from Garnet Growth Zoning

P-T paths were determined by simulating garnet growth zoning using the Gibbs method based on Duhem’s theorem (program GIBBS; Spear et al., 1991). Garnets in these rocks preserve growth zoning, as indicated by symmetrical bell-shaped Mn profiles formed by Rayleigh fractionation and symmetrical profiles for Mg, Ca, and Fe (Fig. DR1; see the Data Repository). Inputs for GIBBS consist of the initial mineral assemblage, mineral compositions, modes, and the P-T conditions. The initial P-T conditions used were 524 °C at 5 kbar for all 4 garnets, consistent with the garnet core isopleth intersections (Fig. 3). The program Theriak (de Capitani and Petrakakis, 2010) was used to determine all

1GSA Data Repository item 2014146, Figure DR1 (garnet element maps, line traverses and garnet growth simulations), Table DR1 (mineral and model data), Table DR2 (Lu-Hf garnet geochronology data), and Table DR3 (40Ar/39Ar muscovite data), is available online at www.geosociety.org/pubs/ft2014.htm, or on request from editing@geosociety.org or Documents Secretary, GSA, P.O. Box 9140, Boulder, CO 80301, USA.
other initial conditions (Table DR1 in the Data Repository). Theriai applies G-minimization to a specified bulk composition, pressure, and temperature to determine the equilibrium mineral assemblage, modes, and compositions.

The Gibbs method based on Duhem's theorem requires that changes in the values for two monitor parameters be specified in order to solve for changes in all other parameters that describe the system, including pressure and temperature. The mole fractions of grossular and spessartine in garnet (Xgr and Xsp) were selected as monitors. All four garnets were simulated up to the break in slope along the Ca profile (Fig. DR1). As expected, the calculated P-T paths (Fig. 3) extend from the starting conditions toward the field in which margarite is absent. To a good approximation, margarite is fully consumed along the paths upon reaching the margarite-absent field (Table DR1a). It was not possible to simulate garnet growth past the break in slope in the Ca profiles due to the disappearance of margarite from the assemblage and the absence of other suitable Ca sources from among the mineral components of the model assemblage. All garnets yielded very similar P-T paths involving 11–12 °C of temperature increase and 450–680 g of atmospheric argon precluding the utility of isotopic data are plotted in Figure 4 and provided in Table DR2. A regression through all garnet fractions isochron (0.28258 ± 0.00007). Garnet fractions G1, G2, G3, G6, and G7 yield identical ages, within error, and fraction G8 yields a slightly younger age. This difference in the garnet composition gives further justification for removing G8 from our preferred regression.

Variations in the ages in the individual garnet fractions are shown (Fig. 4B) by calculating two-point isochron ages using the Hf isotopic composition of the individual garnet fractions and the initial 176Hf/177Hf determined from the five-point garnet isochron (0.28258 ± 0.00007). Garnet fractions G1, G2, G3, G6, and G7 yield identical ages, within error, and fraction G8 yields a slightly younger age. This difference in the garnet composition gives further justification for removing G8 from our preferred regression.

Two samples were analyzed for muscovite 40Ar/39Ar thermochronometry (Fig. 4C; Table DR3). FM-18 is coarse-grained chloritoid schist in the Johnnie Formation, and FM-19 is from a marble layer within the Stirling Quartzite. Sample FM-18 yielded a plateau age of 152.6 ± 1.4 Ma for steps 4–8, which represents 58.6% of the 40Ar released, and a total gas age of 141.6 ± 0.8 Ma. Sample FM-19 yielded a muscovite plateau age of 146.0 ± 1.2 Ma for heating steps 9–17, during which 51.0% of the 40Ar was released, and a total gas age of 144.2 ± 0.8 Ma. Analyses have consistently low components of atmospheric argon precluding the utility of isochron analysis.

DISCUSSION AND CONCLUSIONS

The new geochronology and P-T path determination clarify the previously enigmatic timing and tectonic significance of metamorphism in the Funeral Mountains. The Lu-Hf garnet age of ca. 158 Ma records the timing of prograde garnet growth during a pressure increase of ~500 bar, beginning at ~5 kbar (~19 km) and ~525 °C (Fig. 3). The stratigraphic burial for these rocks, however, is estimated to be only ~9–10 km. Therefore, the Neoproterozoic strata need ~10 km of tectonic burial to achieve the depth at which garnet growth began (~19 km). Garnet growth captured only the last part of the burial history. Cooling recorded in 146–153 Ma 40Ar/39Ar muscovite ages, likely due to partial exhumation, shortly followed burial. Recognition of Late Jurassic metamorphism and thrust burial in the Funeral Mountains has both local and regional implications for Cordilleran tectonics.

In the vicinity of the Death Valley area, the Permian Death Valley fold-thrust belt, Jurassic East Sierran thrust system, and Sevier fold-thrust belt are adjacent to and locally overlap one another, forming a composite thrust belt (Fig. 1) (Snow, 1992; Dunne and Walker, 2004). Structural burial by the Permian thrust belt, including the Last Chance thrust (e.g., Snow, 1992; Stevens and Stone, 2005), is insufficient to achieve the ~9 kbar metamorphic pressures in Monarch Canyon rocks (Hodges and Walker, 1990; Snow, 1992; Hoisch and Simpson, 1993; Applegate and Hodges, 1995). Jurassic thrust faults have not been recognized in the Funeral Mountains and the relative component of Jurassic versus Permian burial is uncertain. We propose that the Miocene Boundary Canyon detachment fault either cuts out a Jurassic thrust plate or is a reactivated Jurassic thrust. Resolution of the relative magnitudes of Late Jurassic versus Permian burial will require further study of the deepest metamorphic levels near Monarch Canyon aimed at seeing through the extensive thermal overprint of protracted Late Cretaceous to Paleocene partial melting, dikes...
and silt injection, and metamorphism (Matting-
son et al., 2007).

Thrust burial in the Funeral Mountains was con-
temporaneous with the middle interval of
shortening in East Sierran thrust system (Dunne
and Walker, 2004) (Fig. 1), but younger than
shortening in the Early to Middle Jurassic
Luning-Fencemaker fold-thrust belt, which ac-
complished closure of a backarc basin perhaps
driven by arc collision (Wyld, 2002; Dorsey and
LaMaskin, 2007). Neither thrust system ac-
complished sufficient tectonic loading to produce
regional metamorphism.

The Late Jurassic (ca. 158 Ma) thrust burial
recorded in garnet growth in the Funeral Moun-
tains took place shortly after a late Middle to
early Late Jurassic tectonic reorganization and
formation of a new coherent noncollisional con-
vergent plate margin. Reconstructions of Creta-
ceous dextral strike-slip displacement along the
Mojave–Snow Lake fault places the Funeral
Mountains east of the northern Sierra Nevada
and Franciscan complex of the northern Coast
Ranges (Fig. 1; Schweickert and Lahren, 1990;
Wyld and Wright, 2001; Dickinson, 2006). Al-
though there is debate about when Franciscan
subduction initiated, most agree that subduc-
tion was underway by 170–160 Ma, the time of
metamorphism of high-grade metamorphic
rocks within the Franciscan complex (e.g., An-
czkiewicz et al., 2004; Wakabayashi and Dumi-
tru, 2007). Large-magnitude crustal shortening
of Cretaceous age is extensively documented
in the Sevier orogenic belt; however, this study
suggests that a case study of excess argon: Geo-
logical Society of America Abstracts with Programs,

Dickinson, W.R., 2006, Geotectonic evolution of the
/GEO2006041.

Cenozoic expansion of the Cordilleran continental
margin in California and adjacent Oregon: Geo-

Dorsey, R.J., and LaMaskin, T.A., 2007, Stratigraphic
record of Triassic–Jurassic collisional tectonics
in the Blue Mountains province, northeastern

Dunne, D.C., and Walker, J.D., 2004, Structure and
evolution of the East Sierran thrust system, east
central California: Tectonics, v. 23, TC4012, doi:
10.1029/2002TC001478.

Hodges, K.V., and Walker, J.D., 1990, Petrologic con-
straints on the unroofing history of the Fun-
eral Mountain metamorphic core complex, California:

of metamorphic rocks in the lower plate of a detach-
ment fault in the Funeral Mountains, Death Valley,

Labotka, T.C., 1980, Petrology of a medium-pressure
regional metamorphism terrain, Funeral Moun-
670–689.

Mattinson, C.G., Colgan, J.P., Metcalfe, J.R., and Miller,
E.L., 2007, Late Cretaceous to Paleocene metamor-
phism and magmatism in the Funeral Mountains
region: The Cosumnes Complex, Death Valley, Cali-
fornia, in Cloos, M., et al., eds., Convergent margin
terranes and associated regions: A tribute to W.G.
Emst: Geological Society of America Special Paper

McGrew, A.J., Peters, M.T., and Wright, J.E., 2000,
Thermobarometric constraints on the tectono-
thermal evolution of the East Humboldt Range
metamorphic core complex, Nevada: Geological
Society of America Bulletin, v. 112, p. 45–60, doi:

structure and metamorphism in the hinterland of
the Sevier thrust belt, western U.S. Cordillera:
(1990)017<0059:CSACTR>2.3.CO;2.

Schweickert, R.A., and Cowan, D.S., 1975, Early Mesozoi-
cic tectonic evolution of the western Sierra Ne-
vada, California: Geological Society of America
7606(1975)86<1329:EMTEOT2.0.CO;2.

reconstruction of the Mojave–Snow Lake fault:
Implications for Paleozoic and Mesozoic orogen-
esis in the western United States: Tectonics, v. 9,

Snow, J.K., 1992, Large-magnitude Permian shortening
and continental margin tectonics in the southern
Cordillera: Geological Society of America Bulletin,
104<0080:LMPSAC>2.3.CO;2.

Snow, J.K., and Wernicke, B.P., 2000, Cenozoic tectonism
in the central Basin and Range: Magnitude, rate,
and distribution of upper crustal strain: American
/jas.300.9.659.

Spear, F.S., Peacock, S.M., Kohn, M.J., Florence, F.P.,
and Menard, T., 1991, Computer programs for
petrologic P-T-path calculations: American Min-

Stevens, C.W., and Snow, J.K., 2005, Interpretation of the
Last Chance thrust, Death Valley region, Califor-
nia, as an Early Permian decollement in a previ-
ously undeformed shale basin: Earth-Science
Reviews, v. 73, p. 79–101, doi:10.1016/j.earscirev
2005.04.005.

Wakabayashi, J., and Dumitru, T.A., 2007, 40Ar/39Ar ages
from coherent high-pressure metamorphic rocks of
the Franciscan Complex, California: Revisiting the
timing of metamorphism of the world’s type
subduction complex: International Geology Re-
19930491.

Wells, M.L., Hoisch, T.D., Cruz-UrIBE, A.M., and Ver-
voort, J.D., 2012, Geochemistry of synconvergent
tension and tectonic mode switching: Con-
straints from the Sevier orogen: Tectonics, v. 31,

Wright, L.A., and Troxel, B.W., 1993, Geologic map of
the central and northern Funeral Mountains and
adjacent areas, Death Valley region, southern
California: U.S. Geological Survey Miscellaneous
Investigations Series Map I-2305, scale 1:48,000.

Wyld, S.J., 2002, Structural evolution of a Mesozoic
backarc fold-and-thrust belt in the U.S. Cordillera:
New evidence from northern Nevada: Geological
SEOAMB>2.0.CO;2.

Wyld, S.J., and Wright, J.E., 2001, New evidence for
Cretaceous strike-slip faulting in the United
States Cordillera and Implications for terrane-dis-
placement, deformation patterns, and plutonism:
American Journal of Science, v. 301, p. 150–181,
doi:10.2475/jas.301.2.150.

Manuscript received 4 December 2013
Revised manuscript received 6 February 2014
Manuscript accepted 7 February 2014
Printed in USA

Acknowledgments
This research was funded by National Science
Foundation grant EAR-0061048 to Hoisch, grant
EAR-061099 to Wells, and grant EAR-0609856 to Ver-
voort. We thank P.G. DeCelles and three anonymous
reviewers for their helpful comments, which improved
the manuscript.

References Cited
Ancziewicz, R., Platt, J.P., Thirwall, M.F., and Wakaba-
yashi, J., 2004, Franciscan subduction off to a slow
start: Evidence from high-precision Lu-Hf garnet
ages on high grade-blocks: Earth and Planetary
j.epsl.2004.06.003.

Applegate, J.D.R., 1994, The unroofing history of the
Funeral Mountains metamorphic core complex,
California (Ph.D. thesis): Cambridge, Massachu-
setts Institute of Technology, 241 p.

Applegate, J.D.R., and Hodges, K.V., 1995, Mesozoic
and Cenozoic extension recorded by metamor-
phic rocks in the Funeral Mountains, California:
GEOLOGY