Preservation of an extreme transient geotherm in the Raft River detachment shear zone

R. Gottardi¹, C. Teyssier¹, A. Mulch²,³, T.W. Vennemann⁴, and M.L. Wells⁵

¹Department of Geology and Geophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
²Institut für Geologie, Universität Hannover, 30167 Hannover, Germany
³Biodiversity and Climate Research Centre (BiK-F), 60325 Frankfurt, Germany, and Institut für Geowissenschaften, Goethe Universität Frankfurt, 60348 Frankfurt, Germany
⁴Institut de Minéralogie et Géochimie, Université de Lausanne, 1015 Lausanne, Switzerland
⁵Department of Geoscience, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA

ABSTRACT

Extensional detachment systems separate hot footwalls from cool hanging walls, but the degree to which this thermal gradient is the product of ductile or brittle deformation or a preserved original transient geotherm is unclear. Oxygen isotope thermometry using recrystallized quartz-muscovite pairs indicates a smooth thermal gradient (140 °C/100 m) across the gently dipping, quartzite-dominated detachment zone that bounds the Raft River core complex in northwest Utah (United States). Hydrogen isotope values of muscovite (δD ~ −100‰) and fluid inclusions in quartz (δD ~ −85‰) indicate the presence of meteoric fluids during detachment dynamics. Recrystallized grain-shape fabrics and quartz c-axis fabric patterns reveal a large component of coaxial strain (pure shear), consistent with thinning of the detachment section. Therefore, the high thermal gradient preserved in the Raft River detachment reflects the transient geotherm that developed owing to shearing, thinning, and the potentially prominent role of convective flow of surface fluids.

INTRODUCTION

Extensional detachment systems are critical interfaces that typically separate the cool, brittle upper crust from high-grade lower and middle crust exhumed in metamorphic core complexes. Detachments are zones of localized deformation, fluid flow, and thermal exchange (Nesbitt and Muehlenbachs, 1989, 1995; Wickham et al., 1993; Morrison, 1994; Morrison and Anderson, 1998; Holk and Taylor, 2000; Mulch et al., 2006; Mulch et al., 2007; Person et al., 2007), but the interplay among these processes is poorly understood. Here, the focus is on the footwall shear zone of the Raft River detachment system in northwest Utah (United States). The shear zone is dominated in quartzite, such that quartz microfabrics provide a useful record on the kinematics and thermomechanics of this detachment system. Hydrogen isotope ratios of quartz fluid inclusions and of fabric-forming, recrystallized white mica demonstrate that surface fluids permeated the shear zone during deformation. Oxygen isotope thermometry based on recrystallized quartz-mica pairs uncovers an extremely high gradient of metamorphic temperatures preserved in the 100-m-thick shear zone. The influx of cool surface fluids likely produced and preserved the high geotherm that developed during detachment tectonics.

THE RAFT RIVER DETACHMENT SYSTEM

The east-rooted, Miocene Raft River shear zone (Malavieille, 1987; Wells et al., 2000; Wells, 2001) is localized in the Proterozoic Elba Quartzite, which unconformably overlies an Archean basement complex (Compton, 1972, 1975). Cenozoic ⁴⁰Ar/³⁹Ar white mica ages from the quartzite define a west-to-east age gradient from 47 to 15 Ma (Wells et al., 2000). This study focuses on the easternmost exposure of the Miocene shear zone (Clear Creek Canyon; Wells, 2001; Sullivan, 2008), where the shear zone is localized in an ~100-m-thick quartzite-dominated shear zone.

The Elba Quartzite includes, from bottom to top, a basal quartzite-cobble metaglomerate, an alternating sequence of white quartzite and muscovite-quartzite schist, a distinctive layer of red quartzite, and a pebble-metaglomerate that includes alternating feldspar-rich quartzite, pure quartzite, and quartz-pebble metaglomerate (Fig. 1) (Wells et al., 1998, 1999; Sullivan, 2008). Paleozoic metasedimentary rocks are preserved as a few scattered klippen above the quartzite and overlying schist unit, and define the hanging wall of the Miocene Raft River detachment (Compton, 1975, Wells, 1997, 2001, 2009; Wells et al., 1998).

QUARTZ MICROFABRICS

The well-developed mylonitic foliation and lineation are constant in orientation throughout the detachment and are defined by flattened and elongated quartz and white mica grains. The strongly deformed quartzite shows two populations of quartz grains, including coarse (>1000 µm long)
MUSCOVITE MICROSTRUCTURE

The mylonitic Elba Quartzite typically contains 5%–10% muscovite. Muscovite grains are 50–200 µm long and a few tens of micrometers thick.

White mica defines the mylonitic foliation in the shear zone, is distributed uniformly on the thin section scale, is in general blocky, and shows little evidence of deformation; mica fish are rare. These observations suggest that mica recrystallized during deformation by dissolution-precipitation creep, which facilitates oxygen and hydrogen isotope exchange between mica and fluid at elevated temperature (e.g., Mulch et al., 2005, 2006).

STABLE ISOTOPE ANALYSES

Oxygen (δ¹⁸O) and hydrogen (δD) isotopic compositions were measured at the University of Lausanne, Switzerland, and Stanford University, California (see the Appendix in the GSA Data Repository1). Results of oxygen isotope analyses (Table DR1 in the Data Repository) of quartz-muscovite pairs sampled across the shear zone indicate that absolute δ¹⁸O values of quartz and muscovite are variable and range from 9.8‰ to 12.7‰ for quartz and 7.1‰ to 9.4‰ for muscovite, without any systematic relationship to position in the vertical profile (Fig. 1). However, the temperature-dependent quartz-muscovite oxygen isotope fractionation (Δ¹⁸OQtz-Musc) increases systematically from 2.4‰ ~10 m from the basement/quartzite contact, to 3.7‰ at the top of the section, irrespective of the absolute δ¹⁸O values of both quartz and muscovite. Using the calibration of Chucko et al. (1996), and assuming isotopic equilibrium between quartz and mica, this increase in the Δ¹⁸OQtz-Musc values indicates a decrease in temperature from 485 °C near the base to 345 °C at the top of the ~100-m-thick shear zone section (Fig. 1).

Hydrogen isotope compositions measured from muscovite (δD_m) (Fig. 1; Table DR2) display values from ~90‰ to ~120‰, with no clear trend in the section. The isotopic value of the fluid present during hydrogen isotope exchange at the temperatures estimated using quartz-muscovite oxygen isotope thermometry is δD_fluid = −100‰ to −70‰ (Suzuki and Epstein, 1976), which is in the range for meteoric fluids (e.g., Taylor, 1977). Similarly, δD values of quartz fluid inclusions (δD_{IFI}) analyzed in five samples over the entire thickness of the shear zone (Fig. 1; Table DR2) have a narrow range, from ~94‰ to ~82‰, with no systematic variation in the section. These values are in good agreement with those calculated from δD_{ma} values, and are also consistent with meteoric fluids.

DISCUSSION

Analyses of finite strain, kinematic vorticity (Wells, 2001; Sullivan, 2008), deformation mechanisms, and thermometry results from a quartzite-dominated section of the Raft River shear zone are integrated to evaluate the role of deformation and fluids in the thermomechanics of detachment systems. The smooth change in isotopic fractionation between quartz and mica across the section, independent of the absolute δ¹⁸O values of quartz and mica pairs, is likely related to an increase in temperature of equilibration downward through the 100-m-thick shear zone. Even though absolute temperature estimates are biased depending on the choice of the calibration used for fractionation, relative temperature trends across the detachment are robust. Despite an analytical error of 20–30 °C on temperatures determined from each quartz-mica pair, the high apparent linear metamorphic gradient (140 °C/100 m) indicated by our δ¹⁸O measurements is incompatible with a conductive structure and requires a compressed thermal gradient.

The quartzite microstructure is quite constant over the Clear Creek section, in apparent conflict with the temperature gradient revealed by oxygen isotope thermometry. However, in dislocation creep, quartz microstructure is controlled by flow stress, which is dependent on temperature/strain-rate relations (Hirth and Tullis, 1992). At Clear Creek, microstructures reflect relatively high flow stress during detachment tectonics,
irrespective of temperature, which suggests that temperature and strain rate self-adjusted to maintain near-constant stress. Given the relatively uniform fine material documented by Sullivan (2008) on this section, the thermal gradient revealed by mineral pair thermometry may indicate that microstructure at the bottom of the section developed at a higher strain rate for a shorter time compared to the top of the section. This scenario necessitates migration of the deformation front through the shear zone, with a tendency for strain to localize downward (toward higher temperature), which could be tested, for instance, by dating synekinematic micas.

Three factors can perturb syndeformational geotherms in detachment systems such as the Raft River shear zone (Fig. 3). First, the dipping shear zone advects and juxtaposes hot rocks from the footwall and cold rocks from the hanging wall, such that a steep transient geotherm is established (Fig. 3B). For the Raft River shear zone, which probably evolved at shallow dip angles (Wells, 2001), this effect may account for the high metamorphic gradient only if the shear zone accommodated large displacements (Wells et al., 2000). Second, thinning of the footwall shear zone may also lead to heat advection (Fig. 3C). Coaxial flow was an important component of deformation in the Raft River shear zone (Compton, 1980; Wells, 2001; Sullivan, 2008), and our quartz crystallographic data support this conclusion (Fig. 2). Hence, the isotopic ratios and temperatures determined for the Raft River shear zone are likely to have been preserved during synekinematic thinning. However, given the original thickness of the Elba Quartzite, thinning alone cannot account for the preserved thermal gradient. Finally, the influx of cool surface fluids down to the detachment can maintain a steep transient geotherm over the time scale of scaling and/or exhumation (Fig. 3D).

Hydrogen isotope ratios measured in quartz fluid inclusions and white micas indicate that the fluids present during deformation were of meteoric origin. Fluid inclusion δD values are constant throughout the section, and are similar to the mean of the values calculated to be in equilibrium with the white mica in the Elba Quartzite at their temperatures of formation. Therefore, it is reasonable to infer that cool surface fluids reached the detachment shear zone and therefore likely played a role in the thermal evolution of this detachment system. While simple shear and pure shear strain in the detachment shear zone are capable of creating a steep isotherm, we propose that cooling induced by fluid flow is the dominant process by which a transient geotherm develops and remains preserved across detachment shear zones. What is true for the Raft River shear zone is likely the case for other detachment systems in which the presence of meteoric fluids has been recognized (Morrison and Anderson, 1998; Holk and Taylor, 1997, 2000, 2007; Mulch et al., 2004, 2006, 2007).

In extensional detachment systems, fluid circulation in the upper crust is driven by surface topographic gradients and by heat flux from below, which drives fluid flow by buoyancy (Person et al., 2007; Saar, 2011). Crustal extension associated with orogenic collapse is a setting in which high-amplitude topography creates a hydraulic head, for example through domino-style tilting of upper crustal blocks (e.g., Basin and Range). This hydraulic forcing develops at the same time as hot crust is brought in contact with cool crust by detachment tectonics. In the upper crust, subvertical fracture patterns enhance the transfer of fluids, and normal faults are natural fluid conduits that provide pathways for upward and downward fluid flow (Fig. 3A). Studies of mineral isotopic compositions show that surface fluids do not, in general, penetrate the deep footwall of detachment systems (Fricke et al., 1992; Holk and Taylor, 2007) but do penetrate detachment shear zones (Mulch et al., 2004, 2006, 2007). This circulation of surface fluids must participate in cooling the detachment system (Person et al., 2007). Yet, time-integrated water-rock ratios typically diminish downward, which indicates that larger-scale conductive cooling of the detachment footwall is limited to the detachment shear zone (Mulch et al., 2006, 2007).

In conclusion, thermal structure, thermal exchange regime, fluid flow, and strain critically control the dynamics and transient geotherm of extensional detachment systems. The high thermal gradient of ~140 °C/100 m across the Raft River shear zone revealed by isotope thermometry was probably generated by displacement across the detachment system, including coaxial thinning of the footwall shear zone, and more critically by the circulation of surface fluids, which produced a transient geotherm that was likely sustained over the duration of detachment tectonics.

ACKNOWLEDGMENTS

Gottardi, Vennemann, and Teyssier acknowledge support from the Swiss Science Foundation FNS-117694 and a U.S. National Science Foundation (NSF) grant EAR-0638541; Mulch acknowledges NSF grant EAR 0609649 support through Stanford University, laboratory support through German Science Foundation DFG-INST-187/400-1FUGG, and through the LOEWE funding program (Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz) of Hesse’s Ministry of Higher Education, Research, and the Arts. Wells acknowledges support from NSF grant EAR 0610009. We thank F. Rossetti, W. Sullivan, and an anonymous reviewer, as well as Editor Sandra Wyld, for their helpful comments.

REFERENCES CITED


Compton, R.R., 1980, Fabrics and strains in quartzites of a metamorphic core complex, Raft River Mountains, Utah, in Crittenden, M.D. Jr., et al., eds.,